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Abstract

The convergence and accuracy of Adomian's decomposition method of solution is analysed in the context of its
application to the solution of Lorenz equations which govern at lower order the convection in a porous layer (or
respectively in a pure ¯uid layer) heated from below. Adomian's decomposition method provides an analytical

solution in terms of an in®nite power series and is applicable to a much wider range of heat transfer problems. The
practical need to evaluate the solution and obtain numerical values from the in®nite power series, the consequent
series truncation, and the practical procedure to accomplish this task, transform the analytical results into a

computational solution evaluated up to a ®nite accuracy. The analysis indicates that the series converges within a
su�ciently small time domain, a result that proves to be signi®cant in the derivation of the practical procedure to
compute the in®nite power series. Comparison of the results obtained by using Adomian's decomposition method

with corresponding results obtained by using a numerical Runge±Kutta±Verner method show that both solutions
agree up to 12±13 signi®cant digits at subcritical conditions, and up to 8±9 signi®cant digits at certain supercritical
conditions, the critical conditions being associated with the loss of linear stability of the steady convection solution.
The di�erence between the two solutions is presented as projections of trajectories in the state space, producing

similar shapes that preserve under scale reduction or magni®cation, and are presumed to be of a fractal form. # 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The application of Adomian's [1,2] decomposition
method as an alternative solution method to a wide

variety of heat transfer problems motivates this study.
The method is applicable to any heat transfer problem

that can be reduced to a ®nite set of non-linear (or lin-
ear) ordinary di�erential equations, transforming an
initial-boundary value problem which consists of par-
tial di�erential equations, with their initial and bound-

ary conditions, governing the heat transfer process,
into an initial value (or boundary value) problem.
While the applicability of the method to the problem

of heat convection in a ¯uid layer heated from below
was demonstrated by Vadasz [3], and its application to
the corresponding problem in porous media by Vadasz
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and Olek [4,5], particular questions regarding its con-
vergence and accuracy remained unanswered. The

objective of the present paper is to address these unan-
swered questions and compare the accuracy of the
results obtained via Adomian's decomposition method

with corresponding results obtained via classical nu-
merical methods, such as the Runge±Kutta method.
For demonstration purposes we adopted the solution
of the Lorenz equations which govern at lower order

the dynamics of convection in a ¯uid layer (or a ¯uid
saturated porous layer) heated from below [6,7] and
presents particular challenges due to its high sensitivity

to small variations of the initial conditions on the
threshold of transition from steady convection to
weak-turbulence (chaos).

The derivation of Lorenz equations from the orig-
inal partial di�erential equations was presented by
Vadasz and Olek [4,5] for convection in a porous layer
heated from below, and by Lichtenberg and Lieberman

[8] and Vadasz [3] for the corresponding problem of
convection in a pure ¯uid layer (non-porous domain)
heated from below. There are di�erent approaches to

analyse the non-linear convection problem leading to
di�erent degrees of insight into the variety of phenom-
ena and the corresponding dynamics of the system as

the Rayleigh number increases. One such approach
was adopted by Lorenz [6] (see also [7,8]). While the
truncated Lorenz equations are limited either to mod-

erate Rayleigh numbers or to represent the solution in
the interior, excluding boundary layers which develop

at high values of Rayleigh number (Ra ), Malkus [9]
showed that in some cases this set of three equations

decouple from the rest (with exact closure), at least in
the sense of weighted residuals. Therefore, their sol-
ution is relevant even when solving at higher trunca-

tion levels as this set of three equations needs to be
solved separately before attempting to solve the rest of
the set corresponding to the higher modes. In general
the dynamics related to this reduced system is so rich

that it is important to understand it prior to attempt-
ing to solve at higher orders.
While most of the studies of Lorenz equations

attempting to analyse the transition from steady con-
vection to chaos use numerical methods, Vadasz and
Olek [4,5] applied Adomian's decomposition method

[1,2] to solve this set of equations for a porous layer
heated from below at low and moderate Prandtl num-
bers, respectively. Similarly, the application of
Adomian's decomposition method to solve the corre-

sponding problem of centrifugally induced convection
in a rotating porous layer was presented by Vadasz
and Olek [10]. The decomposition method provides an

analytical solution in terms of an in®nite power series.
The practical need to evaluate the solution and obtain
numerical values from the in®nite power series, the

consequent series truncation, and the practical pro-
cedure to accomplish this task, transform the otherwise
analytical results into a computational solution evalu-

ated up to a ®nite accuracy. While Adomian's de-
composition method was shown to provide extremely

Nomenclature

Da Darcy number, equals k�=H 2
�

k� permeability of a porous matrix
H� the height of the domain

Pr Prandtl number, n�=ae�
q dimensionless velocity vector, equals uêx �

nêy � wêz
Ra Rayleigh number
R scaled Rayleigh number, equals Ra=Racr

Racr critical value of Rayleigh number associated

with the loss of linear stability of the motion-
less solution

Rt value of R associated with the transition from
steady to non-steady convection

t̂ time
T dimensionless temperature, equals �T� ÿ

TC�=�TH ÿ TC�
TC coldest wall temperature
TH hottest wall temperature
u horizontal x component of the velocity

v horizontal y component of the velocity
w vertical component of the velocity

x horizontal length co-ordinate
y horizontal width co-ordinate
z vertical co-ordinate

X scaled amplitude
Y scaled amplitude
Z scaled amplitude

Greek symbols
a� thermal di�usivity

b� thermal expansion coe�cient
n� ¯uid's kinematic viscosity
m� ¯uid's dynamic viscosity
c stream function

f porosity
t rescaled time for porous media convection,

equals 2p2 t̂

Subscripts
� dimensional values

c critical values
t transitional value
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accurate results for a wide range of non-linear
problems (see [11]), it is necessary to investigate its

accuracy particularly for problems which are known to
possess properties of sensitivity of their solution to
small variations in initial conditions. This provides the

motivation for the present study.

2. Problem formulation and uniqueness of solution

The initial value problem considered in this paper
consists of Lorenz equations presented in the form

_X � a�Yÿ X� �1a�

_Y � RXÿ Yÿ �Rÿ 1�XZ �1b�

_Z � 4g�XYÿ Z� �1c�
subject to the initial conditions;

t � 0: X�0� � X0; Y�0� � Y0; Z�0� � Z0 �2�
where R is the scaled Rayleigh number de®ned as
Ra=Racr, where Racr is the critical value of the Ray-

leigh number associated with the loss of stability of the
motionless solution, and equals Racr � 4p2 for porous
media convection, or Racr � 27p4=4 for convection in

pure ¯uids. The parameter a is related to the Darcy±
Prandtl number in porous media convection, i.e.
a � gfPr=p2Da, where Da � k�=H 2

� is the Darcy num-

ber, and it is equal to the Prandtl number Pr for con-
vection in pure ¯uids. The parameter g is related to the
wave number of convection, which is taken to be con-
sistent with the wave number at the convection

threshold, a requirement imposed in order to ®t the
convection cells into the domain and ful®l the bound-
ary conditions. This requirement yields for porous

media convection a value of g � 1=2, and for pure
¯uids convection (non-porous domains) g � 2=3: With
this value of g the de®nitions of R and a are explicitly

expressed in the form R � Ra=4p2, a � fPr=2p2Da for
porous media convection, and R � 4Ra=27p4, a � Pr
for convection in pure ¯uids.
Lorenz Eqs. (1a)±(1c) represent at lower order the

solution to the problem of convection in a ¯uid-satu-
rated porous layer (or respectively in a pure ¯uid
layer) of a dimensional height H� and a thermal di�u-

sivity (e�ective thermal di�usivity for porous media)
a�, heated from below. Its dependent variables X, Y
and Z represent the amplitudes of the spatial modes

for the dimensionless stream function and temperature
expressed in the following form that applies to porous
media convection

c � ÿ2
��������������������
2g�Rÿ 1�

p
g

X�t� sin�px� sin�pz� �3�

T � 1ÿ z� 2
��������������������
2g�Rÿ 1�

p
pR

Y�t�

cos�px� sin�pz� ÿ �Rÿ 1�
pR

z�t� sin�2pz�
�4�

where the rescaled time is presented in the form t �
2p2 t̂: Similar equations apply to convection in pure

¯uids (non-porous domains). This representation is
equivalent to a Galerkin expansion of the solution in
both x and z directions (dimensionless), truncated
when i� j � 2, where i is the Galerkin summation

index in the x direction and j is the Galerkin sum-
mation index in the z direction.
Eqs. (1a)±(1c) are satis®ed by the motionless sol-

ution X � Y � Z � 0 that is stable when R < 1, by the
steady convective solutions X � Y �21 and Z � 1,
which are linearly stable when 1 < R < Rc2, and by

chaotic or periodic solutions for values of, R > Rt,
(with Rt < Rc2� where Rc2 is the critical value of the
scaled Rayleigh number associated with the loss of lin-

ear stability of the steady convection solution and can
be presented in the form [3±5,7,12]

Rc2 � a�a� 4g� 3�
�aÿ 4gÿ 1� �5�

and Rt < Rc2 is the actual transitional value of the

scaled Rayleigh number when the transition from
steady convection to chaos occurs. For a � 5 and g �
1=2 corresponding to porous media convection the loss
of stability of the convection ®xed points is evaluated

using Eq. (5) to be Rc2 � 25 and for initial conditions
X0 � Y0 � Z0 � 0:9 the transition occurs at R � Rt �
24:647752: The transition from the steady to the chao-

tic solution occurs via a subcritical Hopf bifurcation
[3,7,12±14] and is associated with a homoclinic ex-
plosion when the trajectory which originally moves

around one steady convective solution (®xed point)
departs towards the other ®xed point.
The system (1a)±(1c) has the general form ÇX �

f �X �: By evaluating the Jacobian �@ fi=@Xj � it

is easy to observe that each term in the Jacobian
matrix is bounded, i.e. it satis®es �@ fi=@Xj �RM 8 ftE�0,
tmax� and �XER3�g, where M > 0 is Lipschitz constant.

Therefore, for the system (1), f �X � satis®es the
Lipschitz continuity condition, hence the initial value
problem (1a)±(1c) and (2) has a unique solution.

3. Adomian's decomposition method of solution

Adomian's decomposition method [1,2], is applied to
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solve the initial value problem (1a)±(1c) and (2). The
method provides in principle an analytical solution in

the form of an in®nite power series for each dependent
variable and its excellent accuracy in solving non-linear
equations was demonstrated by Olek [11]. The salient

aspects of the method are presented in detail by Olek
[11] or in a shorter form by Vadasz and Olek [4,5], and
will therefore be skipped here. The method produces an

analytical solution which takes the following form

Xi�t� �
X1
n�0

ci, n
tn

n!
8 i � 1, 2, 3 �6�

where X1 � X, X2 � Y and X3 � Z, and

ci, 0 � Xi�0� 8 i � 1, 2, 3 �7�
and the general term for nr1 is de®ned through the fol-

lowing recurrence relationship

c1, n � ÿa�c1, �nÿ1� ÿ c2, �nÿ1� � �8a�

c2, n � Rc1, �nÿ1� ÿ c2, �nÿ1� ÿ �R

ÿ 1�
Xnÿ1
k�0

�nÿ 1�!c1, kc3, �nÿkÿ1�
k!�nÿ kÿ 1�! �8b�

c3, n � ÿ4gc3, �nÿ1� � 4g
Xnÿ1
k�0

�nÿ 1�!c1, kc2, �nÿkÿ1�
k!�nÿ kÿ 1�! �8c�

While the form of the coe�cients may cause incorrectly
the misleading impression that the series solution (6) is
just a Taylor expansion of the solution about t � 0, a

careful inspection of Eqs. (8a)±(8c) shows that these
coe�cients are non-linearly coupled. Therefore this can
not be a Taylor expansion of the solution in the usual

sense except for particular cases when the relationships
between the coe�cients decouple. Actually, Adomian [2]
showed that the sum of Adomian's polynomials that

were used in the derivation of the analytical solution (6),
is equal to a generalised Taylor series about a function
u0�t� and this series converges very rapidly. One needs to

distinguish here between the Taylor expansion of the
solution about t � 0 which does not generally apply,
and the generalised Taylor expansion about a function
that Adomian [2] describes and applies generally to the

derivation of the solution by using this method. These
two are totally distinct concepts and they should be kept
distinct to avoid confusion.

The practical need to evaluate numerical values
from the in®nite power series (6) suggests the use of
the decomposition method as an algorithm for the ap-

proximation of the dynamical response in a sequence
of time intervals �0, t1�, �t1, t2�, . . ., �tnÿ1, tn� such that
the solution at tp is taken as initial condition in the

interval �tp, tp�1� which follows. This approach has the
following advantages: (i) in each time-interval one can

apply a theorem proved by ReÂ paci [15], which states
that the solution obtained by the decomposition
method converges to a unique solution as the number

of terms in the series becomes in®nite, and (ii) the ap-
proximation in each interval is continuous in time and
can be obtained with the desired accuracy correspond-

ing to the desired number of terms.
All computations in the following sections corre-

spond to values of a � 5, g � 1=2 and initial conditions

in the neighbourhood of the positive convective ®xed
point, i.e. X0 � Y0 � Z0 � 0:9 (or Xi�0� � 0:9 8 i � 1,
2, 3). These values correspond to a critical value of
Rc2 � 25 and a transitional value of Rt � 24:647752
(see [4]).

4. Convergence of the series solution

While ReÂ paci [15], provides the rigorous proof of
convergence of the series solution for a more general

form of the problem, the objective in the present paper
is to demonstrate the behaviour of this series (6) in
more detail for the particular Lorenz equations (1).
We are interested also in observing the changes in the

series coe�cients as the value of R varies from R < 1
corresponding to the motionless solution, via 1RR <
Rt corresponding to steady convection (the transition

from steady convection to chaos occurs at a slightly
subcritical value of R � Rt < Rc2� and up to supercriti-
cal values of R > Rc2:
The computation of the coe�cients of the series sol-

ution (6) subject to the initial conditions X0 � Y0 �
Z0 � 0:9 (or Xi�0� � 0:9 8 i � 1, 2, 3� was performed
according to the recurrence Eqs. (8a)±(8c) by using

Mathematica2 [16]. The results show that the series
consists of both positive and negative terms although
not in a regular alternating fashion. While it seems

that for large n values some multi-periodic variation of
sign exists for some range of values of R we did not in-
vestigate in detail this behaviour. Instead, we applied

the ratio test on the absolute values of the series coef-
®cients. This provides a su�cient (although not necess-
ary) condition for convergence of the series for a time

interval Dt � tp ÿ tpÿ1, in the form

lim
n41

���� ci, n�1
�n� 1�ci, n

���� < 1

Dt
�9�

Therefore, if for each value of R > 0 there is a positive
constant M which depends on R such that

lim
n41

���� ci, n�1
�n� 1�ci, n

���� <M �10�
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then there is always a value of Dt > 0 for which the
original series (6) converges unconditionally, i.e. Dt �
1=M: Instead of attempting to prove inequality (10) we
prefer to demonstrate the convergence of the series by
replacing lim

n41jci; n�1=�n� 1�ci; nj with lim
n4N
jci; _n�1=�n�

1�ci; nj in Eq. (9) where N4 large constant, and observe

the behaviour of the function f �n� � jci;n�1=�n� 1�ci;nj
as the value of n increases. The results of the evaluated
values of f �n� for n = 1, 2, 3, . . . , N (where N = 500)
corresponding to di�erent values of R, are presented in

Fig. 1. The results corresponding to the motionless sol-
ution were evaluated for R = 0.9 and are presented in
Fig. 1(a). It is clear from this ®gure that the ratio f �n�
decays as n increases indicating obviously that con-
dition (9) is satis®ed and the series converges. Increas-
ing the value of R to slightly supercritical conditions

corresponding to R = 1.1 provides the results pre-
sented in Fig. 1(b), where the detail presented as the
inset in Fig. 1(c) shows a quite regular pattern of this
ratio at high values of n. Clearly there is no evidence

of any divergence trend for the ratio f �n�, while its
maximum value in this domain is smaller than 50.
Similar results apply for R = 5 which corresponds to

an oscillatory decaying solution towards the convective
steady state (see [4]) as presented in Fig. 1(d). Its detail
presented as the inset in Fig. 1(e) shows also a quite

regular pattern at high values of n. As the value of R
gets closer to the transition from steady convection to
chaos it can be observed that the regularity of the
ratio f �n� disappears as presented in Fig. 1(f) for R �
23 < Rt: Nevertheless, this ratio remains bounded and
there is no indication of divergence as the value of n
increases. Similarly, the ratio f �n� remains bounded

even for conditions pertaining to chaotic solutions as
presented in Fig. 1(g) corresponding to R � 25 > Rt:
We performed these evaluation up to values of N =

1500 (not shown here) with similar conclusions. While
this does not provide a rigorous proof as we did not
evaluate the limit for n41 but rather for n4N

where N is a very large number, there is no evidence of
a trend of divergence of f �n�: However, in order to
provide a more substantial evidence that Adomian's
decomposition method not only converges but is also

accurate when a much smaller number of terms is used
we are providing in the next section a comparison
between the Adomian's decomposition results (referred

thereafter as ``the computational results'') and a nu-
merical solution obtained by using the Runge±Kutta±
Verner method (referred thereafter as ``the numerical

results'').

5. Accuracy of Adomian's decomposition solution

In order to investigate the accuracy of Adomian's

decomposition method of solution we adopted a two-
fold strategy. First, we show that the Adomian de-

composition solution to a reduced version of Eqs.
(1a)±(1c), which has a closed form solution as well,
yields results identical to the closed form solution. Sec-

ond, we solve the system (1a)±(1c) and (2) numerically
and compare the numerical results to Adomian de-
composition results. The adopted numerical method of

solution is the ®fth and sixth order Runge±Kutta±Ver-
ner scheme from the IMSL Library (DIVPRK) [17]
which was applied to double precision to solve the sys-

tem (1a)±(1c) and (2) up to a desired tolerance for
error control speci®ed by the parameter tol.

5.1. Solution to a one-dimensional version of the
equations

In the particular case of a reduced one-dimensional
non-linear system similar to (1a)±(1c), the problem

reduces to

dX

dt
� bX� aX 2 �11�

which has the closed-form solution (obtained by a
simple integration)

X � bX0ebt�
b� aX0�1ÿ ebt �

� �12�

where X0 is the initial condition representing the value
of X at t � 0: The Taylor expansion of this closed-

form solution (12) takes the form

X�t� � X0 � X 0�0�t� X 00�0� t
2

2
� . . .� X �n��0�tn

n!
� . . .

� X0 � X0�b� aX0 �t� X0�b� aX0 ��b� 2aX0 � t
2

2

� X0

ÿ
b3 � 7ab2X0 � 12a2bX 2

0 � 6a3X 3
0

� t3
6

. . .

(13)

On the other hand Adomian's decomposition solution
applied to this case (i.e. to Eq. (11)) yields the coef-
®cients c0 � X0 and

cn � bcnÿ1 � a
Xnÿ1
k�0

�nÿ 1�!ckc�nÿkÿ1�
k!�nÿ kÿ 1�! 8

n � 1, 2, 3, . . .

�14�

for the solution

X �
X1
n�0

cn
tn

n!
�15�
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Fig. 1. The ratio convergence test applied to the series coe�cients for Adomian's decomposition solution, as a function of the num-

ber of terms in the series, corresponding to (a) R = 0.9, (b) R = 1.1, (c) inset for R = 1.1, (d) R = 5, (e) inset for R = 5, (f) R

= 23, (g) R = 25.
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Fig. 1 (continued)
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Fig. 1 (continued)
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By evaluating explicitly the coe�cients in Eq. (14) and
substituting them into Eq. (15) yields the following sol-

ution

X�t� � X0 � X0�b� aX0 �t� X0�b� aX0 ��b� 2aX0 � t
2

2

� X0

ÿ
b3 � 7ab2X0 � 12a2bX 2

0 � 6a3X 3
0

� t3
6

. . .

(16)

This is indeed identical to the Taylor expansion (13)
about t � 0, of the closed form solution (12) to Eq.
(11). Therefore, for this reduced one-dimensional non-

linear system (11), Adomian's decomposition method
yields a Taylor expansion of the closed-form solution
(12), recovering the accurate solution. For equivalent

systems of higher dimensions, however, one can not
generally expect Adomian's decomposition solution to
reduce to a simple Taylor expansion in the usual sense.

5.2. Solution to the complete three-dimensional system

In contrast to the one-dimensional system, for the

complete three-dimensional system of Eqs. (1a)±(1c)
and (2) representing the original initial value problem
corresponding to Lorenz equations we can not expect

a closed form solution and consequently Adomian's
decomposition solution to provide a Taylor expansion
of the solution in the usual sense. For this case we

solved the system (1a)±(1c) and (2) numerically to
double precision by using the ®fth and sixth order
Runge±Kutta±Verner method from the IMSL Library

(DIVPRK) [17] up to a desired tolerance for error con-
trol speci®ed by the parameter tol. We then compared
the Adomian decomposition results (referred thereafter
as ``the computational results'') with the numerical sol-

ution (referred thereafter as ``the numerical results'') by
evaluating the di�erence between the two at all values
of t up to tmax � 210 and plotting this di�erence in the

results as projections of the trajectory of di�erences on
the planes DZ � 0 �DYÿ DX plane), DY � 0 �DZÿ DX
plane) and DX � 0 �DZÿ DY plane), where

DX � Xcomp: ÿ Xnum:, DY � Ycomp: ÿ Ynum: and DZ �
Zcomp: ÿ Znum:: The indices ``comp.'' and ``num.'' stand
for representing the computational (Adomian de-
composition) and numerical (Runge±Kutta) results, re-

spectively. However, just before undertaking this
comparison we assessed the impact of the number of
terms in the series solution, and its truncation, on the

results by evaluating the Adomian decomposition
results for R � 21 and R � 75 with 15 and 150 terms
in the series and comparing them. The results of this

comparison expressed as X�15� versus X�150�, showed
that their numerical values are identical over the whole
range of signi®cant digits of the double precision com-

putation. We therefore concluded that it is su�ciently

accurate for the following computations to use 15
terms in the series for the computational solution.

The results of the comparison between the compu-
tational and numerical solutions corresponding to a
value of Dt � 10ÿ3 used in the computational solution,

and to a value of the tolerance control parameter tol
= 10ÿ6 used in the numerical solution, and for
R � 21, are presented in Fig. 2(a), (b) and (c). From

these ®gures it is evident that the di�erence between
the computational and numerical solutions is of the
order of magnitude 10ÿ9. Attempting to increase the

accuracy of the numerical solution by decreasing the
value of the tolerance control parameter to tol =
10ÿ10 and keeping the value of Dt unchanged, i.e.
Dt � 10ÿ3, yields the results presented in Fig. 2(d), (e)

and (f) in terms of projections of trajectories data
points on the planes DZ � 0, DY � 0 and DX � 0,
where the data points are not connected. It can be

observed from these ®gures that increasing the accu-
racy of the numerical solution brought the compu-
tational and numerical results closer to each other up

to an order of magnitude of 10ÿ12 (for the maximum
di�erence between the two). In addition one can ob-
serve by comparing the Fig. 2(a) with (d), (b) with (e)

and (c) with (f) that the shape of the trajectory of
di�erences is kept quite similar under the scale re-
duction which resulted from increasing the accuracy of
the numerical solution. A further attempt to increase

the accuracy of the numerical solution by reducing the
tolerance control parameter to tol = 10ÿ12 (which is
the smallest possible value that produces valid results)

and evaluating the di�erences between the numerical
and computational solutions yields the results as pre-
sented in Fig. 3. It is evident that the maximum di�er-

ence is now of an order of magnitude of 10ÿ13, as can
be observed from Fig. 3(a), (b) and (c). Their corre-
sponding results in the time domain are presented in
Fig. 3(d) representing the envelope of the solution

DX�t�, and their details are highlighted as insets for
di�erent time ranges in Fig. 3(e) and (f).
Up to this point the comparison between the compu-

tational and numerical results shows that by increasing
the accuracy of the numerical solution (i.e. decreasing
the value of the tolerance control parameter) brings its

results closer to the computational solution up to a
maximum di�erence between the two of an order of
magnitude of 10ÿ13. These results correspond to steady

convection, i.e. subcritical conditions �R � 21). Natu-
rally, one can not expect similar results for supercriti-
cal conditions when the solution is chaotic, because
then two nearby trajectories diverge (at least one of

their Lyapunov exponents is positive). In order to
compare the results between the numerical and compu-
tational solutions and establish the accuracy of Ado-

mian's decomposition method at supercritical
conditions we use the existence of periodic windows
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Fig. 2. Trajectory of di�erences between the computational (Adomian decomposition) and numerical (Runge±Kutta) solutions cor-

responding to Dt � 10ÿ3 in the computational solution, and R = 21. (a) Projection of trajectory's data points on the plane

DZ � 0, with tol = 10ÿ6 in the numerical solution, (b) projection of trajectory's data points on the plane DY � 0, with tol = 10ÿ6

in the numerical solution, (c) projection of trajectory's data points on the plane DX � 0, with tol = 10ÿ6 in the numerical solution,

(d) projection of trajectory's data points on the plane DZ � 0, with tol = 10ÿ10in the numerical solution, (e) projection of trajec-

tory's data points on the plane DY � 0, with tol = 10ÿ10 in the numerical solution, (f) projection of trajectory's data points on the

plane DX � 0, with tol = 10ÿ10 in the numerical solution. (Data points are not connected.)



Fig. 3. Trajectory of di�erences between the computational (Adomian decomposition) and numerical (Runge±Kutta) solutions cor-

responding to Dt � 10ÿ3 in the computational solution, tol = 10ÿ12 in the numerical solution, and R = 21. (a) Projection of trajec-

tory's data points on the plane DZ � 0, (b) projection of trajectory's data points on the plane DY � 0, (c) projection of trajectory's

data points on the plane DX � 0, (d) the solution of DX�t� projected on the time domain, (e) inset of the solution DX�t� projected
on the time domain for 0 < t < 25, (f) inset of the solution DX�t� projected on the time domain for 30 < t < 80. (Except for (e)

and (f), the data points are not connected.)



Fig. 4. Trajectory of di�erences between the computational (Adomian decomposition) and numerical (Runge±Kutta) solutions cor-

responding to Dt � 10ÿ4 in the computational solution, tol = 10ÿ12 in the numerical solution, and R = 75. (a) Projection of trajec-

tory's data points on the plane DZ � 0, (b) projection of trajectory's data points on the plane DY � 0, (c) projection of trajectory's

data points on the plane DX � 0, (d) inset of the projection of trajectory's data points on the plane DX � 0: (Data points are not

connected.)
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Fig. 4 (continued)
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Fig. 5. Trajectory of di�erences between the computational (Adomian decomposition) results corresponding to Dt � 10ÿ3 and

Dt � 10ÿ4 for R = 75. (a) Projection of trajectory's data points on the plane DZ � 0, (b) projection of trajectory's data points on

the plane DY � 0, (c) projection of trajectory's data points on the plane DX � 0: Trajectory of di�erences between the numerical

(Runge±Kutta) results corresponding to tol = 10ÿ10 and tol = 10ÿ12 for R = 75 (d) projection of trajectory's data points on the

plane DZ � 0, (e) projection of trajectory's data points on the plane DY � 0, (f) projection of trajectory's data points on the plane

DX � 0: (Data points are not connected.)



within the chaotic regime and evaluate the comparison
at values of R corresponding to these periodic win-

dows. The ®rst wide periodic window appears around
R = 75 (see [4]).
We evaluate therefore the di�erences between the

computational and numerical solutions DX, DY and
DZ at R � 75 providing the results presented in Fig.
4(a), (b) and (c) in terms of projections of trajectories

data points on the planes DZ � 0, DY � 0 and
DX � 0, where the data points are not connected. A
value of Dt � 10ÿ4 was used in the computational sol-

ution, and a value of the tolerance control parameter
tol = 10ÿ12 was used in the numerical solution for the
results presented in Fig. 4. It can be observed from the
®gures that the maximum di�erence between the two

solutions is of the order of magnitude of 10ÿ7. In ad-
dition the detail of the trajectory of di�erences pro-
jected on the plane DX � 0 is presented as the inset of

Fig. 4(c) in Fig. 4(d) where a better description of the
shape of the trajectory can be observed. At this stage
we were interested to establish the reason for the

greater di�erence between the solutions as compared
with the results obtained at subcritical conditions, i.e.
for R � 21, and in particular we attempted to establish

which one of the solutions, the computational or the
numerical is to be ``blamed'' for increasing the di�er-
ence between the two from O�10ÿ13� at R � 21 to
O�10ÿ7� at R � 75: In order to establish this we evalu-

ated the di�erences between two consecutive compu-
tational solutions corresponding to Dt � 10ÿ3 and
Dt � 10ÿ4, respectively, and two consecutive numerical

solutions corresponding to tol = 10ÿ10 and tol =
10ÿ12 respectively. The di�erences between the two
computational solutions are presented in Fig. 5(a), (b)

and (c) and the di�erences between the numerical sol-
utions are presented in Fig. 5(d), (e) and (f). It is evi-
dent from Fig. 5 that the maximum di�erence in the
computational solution is of the order of magnitude

O�10ÿ9� while the maximum di�erence in the numerical
solution is of the order of magnitude O�10ÿ5�: We can
therefore establish that the computational solution is

more accurate in this case (i.e. its level of accuracy is
saturated) and the ``blame'' for the loss of accuracy is
to be placed on the numerical solution. Naturally, one

can improve the accuracy of the numerical method by
adopting a constant rather than variable time step al-
gorithm, which is less e�cient computationally, or by

choosing a higher order Runge±Kutta scheme. Never-
theless, the comparison o�ered here is related to a
standard library package (IMSL DIVPRK [17]) that is
likely to be widely used. In this context, the compari-

son shows that when the standard library package tol-
erance parameter is taken to its limit (no more
tightening of tolerance is possible beyond tol =

10ÿ12), the computational solution outperforms the nu-
merical one. Furthermore, even when we decrease the

number of terms in the series to 10 the computational
results remain the same up to the whole range of digits

of machine precision. Therefore, the computational
results are more accurate than the presently used nu-
merical ones corresponding to their smallest possible

tolerance, even with only 10 terms in the series. Redu-
cing further the number of terms in the series decreases
the accuracy of the computational results. An ad-

ditional interesting result which is evident from Fig. 5
is that the shape of the trajectory of di�erences is kept
similar under the scale reduction.

We continued to compare the computational and
numerical solutions at the next wide periodic window
(see [4]), i.e. at R = 86 with the parameters Dt � 10ÿ4

for the computational solution and tol = 10ÿ12 for the
numerical solution. Their results are presented in Fig.
6 where a further deviation between the two solutions
is evident resulting in a maximum di�erence of an

order of magnitude of O�10ÿ3�: Finally, we computed
the di�erence between the two solutions (compu-
tational and numerical) for the post-chaotic regime

obtained at high R values (see [4,7]). The results for
the di�erences in this regime for R � 150 (with Dt �
10ÿ4 for the computational solution and tol = 10ÿ12

for the numerical solution) are presented in Fig. 7(a),
(b) and (c) showing a maximum di�erence of an order
of magnitude of O�10ÿ10�: Their corresponding sol-
utions in the time domain are presented for DX versus

t in Fig. 7(d) and for DY versus t in Fig. 7(e). The
detail of Fig. 7(e) representing the inset of the solution
in the time interval 200 < t < 210 is presented in Fig.

7(f). The results in the time domain clearly indicate
that the di�erences between the solutions continue to
increase, while in a small time interval �200 < t < 210�
this di�erence seems almost periodic. The linear shape
of the solution envelope function in the time domain is
particularly interesting to notice. In order to establish
the further evolution of the di�erences solution in time

we re-evaluated both the computational and the nu-
merical solutions up to a maximum time of tmax � 650,
i.e. more than three times longer than the previous.

The results of the di�erences for this long time sol-
utions are presented in Fig. 8 showing a maximum
di�erence of an order of magnitude of O�10ÿ9�: There-
fore increasing the maximum time for the compu-
tations by a factor of 03 increased the di�erence
between the two solutions by one order of magnitude.

Another result observed from comparing Fig. 8(a), (b)
and (c) with Fig. 7(a), (b) and (c) is that the shape of
the trajectory of di�erences is altered only in the sense
that a ¯ip around the plane DZ � 0 occurred, but the

shape presented in Fig. 7 is included at the lower scale
in Fig. 8, hence the shape is preserved similar under re-
duction or magni®cation and is therefore presumed to

be a fractal. The corresponding results for the long
time solutions are presented in Fig. 8(d), (e) and (f),
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where the inset corresponding to the detailed time

interval 646 < t < 650 is presented in Fig. 8(e), identi-

fying what seems to be an almost periodic behaviour.

It is evident from the time domain representations of

the solutions that increasing the maximum time for the

computation does not bring the solution di�erences to

a post-transient state.

These di�erences continue to increase as t increases

Fig. 6. Trajectory of di�erences between the computational (Adomian decomposition) and numerical (Runge±Kutta) solutions cor-

responding to Dt � 10ÿ4 in the computational solution, tol = 10ÿ12 in the numerical solution, and R = 86. (a) projection of trajec-

tory's data points on the plane DZ � 0, (b) projection of trajectory's data points on the plane DY � 0, (c) projection of trajectory's

data points on the plane DX � 0: (Data points are not connected.)
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Fig. 7. Trajectory of di�erences between the computational (Adomian decomposition) and numerical (Runge±Kutta) solutions for

a maximum computational time, tmax=210, corresponding to Dt=10ÿ4 in the computational solution, tol=10ÿ12 in the numerical

solution, and R= 150. (a) Projection of trajectory's data points on the plane DZ= 0, (b) projection of trajectory's data points on

the plane DY = 0, (c) projection of trajectory's data points on the plane DX = 0. (d) the solution of DX�t� projected on the time

domain, (e) the solution of DY�t� projected on the time domain, (f) inset of the solution DY�t� projected on the time domain for

200< t<210. (Except for (f), the data points are not connected.)
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Fig. 8. Trajectory of di�erences between the computational (Adomian decomposition) and numerical (Runge±Kutta) solutions for

a maximum computational time, tmax=650, corresponding to Dt=10ÿ4 in the computational solution, tol=10ÿ12 in the numerical

solution, and R= 150. (a) Projection of trajectory's data points on the plane DZ= 0, (b) projection of trajectory's data points on

the plane DY = 0, (c) projection of trajectory's data points on the plane DX = 0. (d) the solution of DX�t� projected on the time

domain, (e) inset of the solution DX�t� projected on the time domain for 646 < t< 650, (f) the solution of DY�t� projected on the

time domain. (Except for (e), the data points are not connected.)
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and the envelope of the solution in the time domain
also preserves a similar property. At this stage it is

essential to get a realistic feeling of the dimensional
values of time corresponding to tmax � 210 and tmax �
650 in order to understand the practical implications

of continuing the evaluations for higher values of tmax:
We therefore convert the dimensionless time back to
dimensional values by using a range of values of ther-

mal di�usivity a� corresponding to silicon oils
�a�010ÿ7 m2/s), water �a�01:5� 10ÿ7 m2/s), air
�a�02:3� 10ÿ5 m2/s) and some liquid metals �a�06�
10ÿ5 m2/s) and a range of length scales spanning from
0.01 (corresponding to some insulation layers), 0.1, 1
and upto 100 m (corresponding to convection in
underground aquifers). The converted dimensional

values of t�, max corresponding to the dimensionless
value of tmax � 210 varies from 018 and 046 s for
liquid metals and air, respectively, to 02 and 03 h for

water and silicon oils, respectively, all ®lling a domain
having a height of 0.01 m. When the domain's height
increases to 1 m the corresponding dimensional value

of t�, max increases by a factor of 104 and becomes 02
days, 05.3 days, 02.3 years and 03.4 years for liquid
metals, air, water and silicon oils, respectively. A

further increase in the domain's height to 10 m causes
a corresponding increase in t�, max by a factor of 102

and brings all its values to be of an order of magnitude
of between 01 and 340 years. All these results increase

by a factor of 03.1 when the dimensionless value of
tmax becomes tmax � 650: Clearly, there is no much
point in looking at the behaviour of the results beyond

these maximum time values as in practice they will be
noticed on a ``secular'' time scale only, and no practi-
cal measurements can be taken over such a long time

scale. Any experimental observations will detect a
``perpetual transient'' phenomenon and post-transient
results, even if they exist, (or their divergence over the
``secular'' time scale), are of a much less relevance in

this context.

6. Conclusions

A demonstration of the convergence conditions for
Adomian decomposition method of solution to the
Lorenz equations was presented for a wide range of

values of the scaled Rayleigh number. A further evalu-
ation of the accuracy of the decomposition method
was undertaken by comparing its results with a nu-

merical Runge±Kutta±Verner solution. The solutions
clearly indicate that Adomian's decomposition method
yields generally more accurate results than the numeri-

cal method, however both solutions agree up to 12±13
signi®cant digits at subcritical conditions, and up to 8±
9 signi®cant digits at certain supercritical conditions.

The di�erence between the two solutions was presented
as projections of trajectories in the state space, pro-

ducing similar shapes that preserve under scale
reduction or magni®cation, and are presumed to be of
a fractal form.
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